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Abstract—Time perception—how humans and animals per-
ceive the passage of time—forms the basis for important cognitive
skills, such as decision making, planning, and communication. In
this work, we propose a framework for examining the mecha-
nisms responsible for time perception. We first model neural
time perception as a combination of two known timing sources:
internal neuronal mechanisms and external (environmental) stim-
uli, and design a decision-making framework to replicate them.
We then implement this framework in a simulated robot. We
measure the robot’s success on a temporal discrimination task
originally performed by mice to evaluate their capacity to exploit
temporal knowledge. We conclude that the robot is able to per-
ceive time similarly to animals when it comes to their intrinsic
mechanisms of interpreting time and performing time-aware
actions. Next, by analyzing the behavior of agents equipped with
the framework, we propose an estimator to infer characteristics
of the timing mechanisms intrinsic to the agents. In particular,
we show that from their empirical action probability distribu-
tion, we are able to estimate parameters used for perceiving
time. Overall, our work shows promising results when it comes to
drawing conclusions regarding some of the characteristics present
in biological timing mechanisms.

Index Terms—Cognitive modeling, microstimuli, reinforcement
learning, robotics, time perception.

I. INTRODUCTION

UNDERSTANDING different aspects and characteris-
tics of humans and animals has been a driving force

in research for centuries (e.g., Skinner’s rats [1], Pavlov’s
dogs [2], or Harlow’s monkeys [3]). Analyzing behavior can
bring insight into how bodies and minds function, from motor
impulses to neural mechanisms. This can contribute, on the
one hand, to obtaining plausible hypotheses about biologi-
cal mechanisms and understanding variations to the baseline.
Such insights might shed light on, e.g., the causes as well as
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treatments for diseases. On the other hand, replicating these
mechanisms in biologically inspired intelligent agents (e.g.,
robots) can enhance their cognitive skills and interactions
with humans [4]. Moreover, biologically inspired mathemati-
cal models also have the potential to push the boundaries of
artificial intelligence. For example, the perceptron [5], which
is a mathematical model inspired by the brain’s neurons, has
been key in the recent advances in deep learning [6].

One of the properties of biological systems whose under-
standing has seen some advances but is yet not fully under-
stood is time perception [7], [8]. It concerns the mechanisms
responsible for the subjective way time is perceived [9]—
it is the origin of such idiomatic expressions as “time flies
when you have fun.” A variable sense of the perception of
time is known to be responsible for adaptive behaviors in ani-
mals, and has been shown to vary as a function of body size
and metabolic rate [10]. Cyber–physical agents such as robots,
however, use a linear clock as the basis for its functions instead
of perceiving time according to the surrounding context [11].
Using temporal information in the agents’ cognitive processes
is considered by many researchers to be one of the milestones
in achieving artificial general intelligence [12], [13]. The abil-
ity to perceive time would enhance skills, such as planning,
recalling of experiences, and communication.

The first step to incorporate time perception in a robot’s
decision-making process is to reproduce the way biological
systems acquire and use such temporal information [14]. Many
different theories, such as the internal clock theory [15] or
the behavioral theory of timing [16], have sought to explain
neural timing mechanisms. Furthermore, many computational
and robotic models have been created to study different
theories [17], such as the pacemaker-accumulator [18] and
memory decay [19] models. Review papers such as [20] have
brought these works together. However, the current literature
still lacks a complete and explainable framework that exploits
temporal information to govern the behavior of agents.

In this work, our main goal can be summarized as follows.
Design an explainable end-to-end framework of cognitive

mechanisms of time perception whose characteristics can be
inferred from the agent’s behavior.

To answer this question, we divide our work in three
main parts: 1) the design of a framework to model cogni-
tive time perception mechanisms; 2) testing the ability of the
framework to exploit temporal information, by comparing the
behavior of agents using it to the behavior of animals per-
forming the same task; and 3) estimation of the characteristics
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of timing mechanisms intrinsic to agents using the
framework.

The main contributions provided in each of these parts are,
respectively, as follows.

1) A biologically inspired reinforcement learning frame-
work that replicates neuronal mechanisms of time (the
behavior of neurons believed to be responsible for time
perception) and combines them with time estimates
obtained from the environment. This framework capac-
itates agents with the ability to perform time-aware
actions (Section III).

2) Numerical experiments that validate the ability of the
proposed framework to exploit temporal information. A
robot performing a temporal-discrimination task using
the framework demonstrates internal features known to
be present in biological timing mechanisms, and esti-
mates the duration of intervals in a similar manner to
that of mice on the same task (Section IV).

3) A method to gain biological insight about the frame-
work used by agents for time perception, based on
analyzing their behavior (actions performed) to com-
pute the parameters inherent to their timing frameworks
(Section V).

The two first contributions were initially studied in the con-
ference paper [21], written by the authors, and are further
developed in the current article. The third contribution is com-
pletely novel and exploits the previous framework to approach
the desired end goal.

The remainder of this article is structured as follows.
Section II formulates the time perception problem. Section III
describes the biologically inspired decision-making framework
proposed to replicate timing mechanisms, and Section IV vali-
dates and evaluates the behavior of an agent using it. Section V
presents the method to estimate parameters of the timing
framework from the behavioral analysis. Finally, in Section VI,
the key conclusions that can be drawn from the article are
highlighted and discussed. Moreover, some indications for
future work are outlined.

II. PROBLEM FORMULATION

In this section, we start by defining the notation and then
present the two main problems addressed in this article.

A. Notation

The subscript t represents discrete time, and the ith element
of vector vt is vt(i). A general probability mass function is
denoted by p(·). Agents that have time perception are denoted
as timing agents, and tasks where time perception is needed as
timing tasks. In the case of interval timing tasks, the variable
of interest is the time difference between two events, which we
designate τ and define as the elapsed time or interval duration.

B. Problem Formulation

The first step of this work is to formalize a framework for
modeling the mechanisms responsible for the perception of
temporal information. This framework needs to be able to
replicate and reproduce the biological mechanisms responsible

for time perception, and do so in a way that allows agents to
perform interval timing tasks. We formalize this goal in the
following question.

Problem 1 (Biologically Inspired Timing Framework): How
can neural time perception mechanisms be reproduced in a
framework that exploits temporal information and produces
time-aware behaviors?

By solving Problem 1, we establish a decision-making
framework that enables agents to perform interval timing tasks
based on the replication of neural timing mechanisms, there-
fore, similar to the way humans and animals perform them.
More specifically, we aim to combine an estimate of the
elapsed time obtained from sensory information (external tim-
ing) with the agent’s biologically inspired decision-making
process (internal timing). The latter includes features that are
inspired by the mechanisms believed to govern time percep-
tion, such as the dopaminergic activity [7]. As a result, we
propose a framework that includes multiple facets of timing
mechanisms for performing time-aware actions.

The initial work on this time-perception framework for solv-
ing Problem 1 was presented recently by Lourenço et al. [21].
In the current article, we present the framework in Section III
and provide validating experiments in Section IV that also
illustrate some of its key components.

Once we have a framework for modeling timing mech-
anisms, we aim to estimate numerical quantities (that have
biological analogues) in the framework from observed behav-
ior of timing agents. In other words, we use our model to
estimate information about the intrinsic characteristics of the
agents’ decision-making process. The focus of Section V is,
hence, the question as follows.

Problem 2 (Estimating Timing Aspects From Behavior):
How can knowledge about the inner mechanisms of timing
agents (such as animals) be gathered from their behavior?

In summary, the solution to these two problems results in
insight into: 1) how different characteristics of the dopamine
system of an agent change its behavior, as well as 2) which
ones are more likely to be the characteristics of the timing
mechanisms present in the brain.

III. BIOLOGICALLY INSPIRED TIMING FRAMEWORK

In this section, we review the framework presented in [21]
to address Problem 1. We first discuss background material
and then formally introduce the framework. Subsequently,
we explain each of the two main component of the frame-
work, which are the internal and external timing components.
The section is concluded with a summary of how they are
combined to obtain the complete timing framework.

A. Preliminaries

We apply results from neuroscience in a decision-making
setup to design a biologically inspired reinforcement learn-
ing [22] algorithm that replicates neuronal timing mechanisms.
We denote these mechanisms as internal timing mechanisms,
since they are related to how internal biological neuronal
mechanisms are believed to affect, and enable, the perception
of time. In this field, one of the most popular theories is that
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Fig. 1. Twofold time perception framework for replicating time perception
mechanisms. Based on the role of external environmental stimuli in time per-
ception, the agent receives environmental observations yt and estimates the
elapsed time τ̂t . A TD learning algorithm replicates internal timing mecha-
nisms using this estimate. The algorithm uses microstimuli features (2), which
are influenced by the elapsed time estimate τ̂t and the state of the environ-
ment st , to compute the Q-values (1) of each state–action pair. According
to its policy (8), it uses the Q-values to select an action at to perform, and
receives a reward rt .

it is the spiking activity of neurons, mostly known as firing
rate, which encodes the passage of time. This is particularly
the case for dopaminergic neurons, evidenced by the change
in dopaminergic activity when tasks are carried out at different
speeds [7]. To replicate mechanisms of time perception, we,
therefore, model the principles of dopaminergic behavior and
reproduce them in a robot.

On the other hand, sensory information has been shown
to have a direct impact (introduce a bias) on our percep-
tion of time [23]. For example, watching a movie in a faster
speed than the natural one leads to an overestimation of time
intervals [24]. We denote the feature responsible for how the
perception of time is influenced by external stimuli as external
timing.

We thus aim for a framework that reproduces the time
estimate that stems from internal neuronal processes (stud-
ied in Section III-C), but also that this estimate should be
affected by temporal information collected from the envi-
ronment (explored in Section III-D). By combining temporal
information that stems from these two different timing sources,
we equip robots with their own structure for time percep-
tion and show that context-dependent timing mechanisms
can be implemented in nonbiological agents. A reinforce-
ment learning setup is used to evaluate the performance of
the biologically inspired decision-making algorithm in timing
tasks—the framework is schematically illustrated in Fig. 1,
and described in more detail throughout this section.

B. Background

Early models of timing in the brain include the clock accu-
mulator, or pacemaker model [16], and the synchronization of
brain wave frequencies [25]. However, later models have been
created to more precisely match neural responses. In [26], it
was found that time is distributively encoded in the dynamics
of neural circuits—the neuronal oscillatory activity or firing
rate. It was confirmed in [8] that the perception of interval
durations can be explained by the speed of change of cer-
tain neuronal populations—particularly, in the dopaminergic
system, which can, therefore, be seen as an internal clock of
the brain [27].

Due to its intrinsic signal that represents the disparity
between the received and the predicted reward, called a reward
prediction error, the dopaminergic system has previously been
demonstrated to be involved in reward prediction and action
selection [28]. To reproduce its ability to predict the impor-
tance of future events from patterns of features that encode the
agent’s experiences, temporal-difference (TD) learning models
have been developed. In such models, the reward prediction
error signal is referred to as the TD error [29].

To represent these features in our framework, we use
one of the currently most plausible theories when it
comes to replicating timing mechanisms, which is called
Microstimuli [30]. Unlike the Presence [29] and the Complete
Serial Compound [29], [31] theories, the microstimuli utilizes
a small set of elements per stimulus to accurately replicate
timing results [32].

C. Internal Timing

Formally, the TD learning model alluded to in the previous
section is modeled in a discrete-time reinforcement learn-
ing setting. In such, the interaction between an agent and
the environment takes the form of a Markov decision
process [33], [34]. Formally, the environment is described by
a state st ∈ S that evolves over time, where S is the state
space and t represents discrete time. At each time step, the
agent performs an action, at ∈ A, and receives a reward
rt ∈ R based on the action performed and the state of the
environment. Its goal is to find the policy (i.e., a strategy)
that maximizes the expected sum of future rewards. The rest
of this section explains the components of the internal timing
component shown in Fig. 1.

We use Q-values [22] in our reinforcement learning setup
since we are interested in studying the actions performed by
the agent. To generalize the estimate of the value of a state
to states that have similar features, we use function approx-
imation [22], which has been shown very advantageous in
problems with large state–action spaces. In particular, we use
a linear weighted combination of D features x(s, a) ∈ R

D to
compute the Q-values of state–action pairs, Q(s, a) : S×A→
R, as

Qt(s, a) = wT
t xt(s, a) =

D∑

j=1

wt(j)xt(j). (1)

These features xt(1), . . . , xt(D) are chosen so as to replicate
the internal neuronal mechanisms mentioned in Section III-B,
which are based on the behavior of dopaminergic neurons and
represented by the Microstimuli framework.

In this framework, each cue and reward deploy a set of m
microstimuli. This means that a total of mζ = D microstimuli
are deployed in episodes with ζ cues and rewards. At time t,
the level of each microstimulus is represented by a feature xt

(see [30, Fig. 2] for a graphical illustration). Mathematically,
this relation is modeled as

xt(j) = ht f

(
ht,

j

m
, β

)
, for j = 1, . . . ,D. (2)

In this relation, the level xt of each microstimulus is com-
puted as the product between an exponentially decaying trace
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height ht ∈ R with decay parameter ξ

ht = exp{−(1− ξ)t} (3)

and a Gaussian basis function

f (h, ν, β) = 1√
2π

exp
{
− (h−ν)2

2β2

}
(4)

with center ν and width β. The amount of decay of each
microstimulus can be used as a reference for the elapsed
interval due to the steadily decaying memory trace. As can
be seen in (1), each microstimuli feature from (2) is multi-
plied by a weight wt ∈ R

D. These weights, wt(1), . . . ,wt(D),
are the values that the agent wants to learn since they
reflect the importance of each feature (such as the strengths
of the corticostriatal synapses) for the different state–action
pairs [30].

An essential attribute to have in efficient reward learning is
eligibility traces, et [35]. Eligibility traces are a characteristic
of learning that acts as a vector of memory parameters that
are susceptible to changes according to the events that they
are associated to.

In summary, the standard reinforcement learning update
equations of the TD error δt, the weights wt, and the eligibility
traces et are, respectively

δt = rt + γ max
a

Q(st+1, a)− Q(st, at) (5)

wt+1(j) = wt(j)+ αδtet(j) (6)

et+1(j) = γ ηet(j)+ xt(j) (7)

where α is the learning rate, γ is the discount rate, and η is
a decay parameter that determines the amount of influence of
recent stimuli.

Once the Q-values are computed, according to (1), the agent
is left with the end-goal task of choosing which action to per-
form. We apply a standard action selection mechanism, called
ε-greedy [22]. The policy of the agent is to, at each time
step, either select a random action or the one with the highest
Q-value

at =
{

arg max
a

Q(st, a), with probability 1− εt

random action, with probability εt.
(8)

This corresponds to the exploration–exploitation tradeoff
that is the basis for learning, where εt is an exploration param-
eter with decay parameter ρ ∈ [0, 1] that decreases according
to εt = ρεt−1 as the agent learns.

This concludes our decision-making framework for repli-
cating internal neuronal mechanisms.

D. External Timing

We now briefly outline how an estimate of the elapsed time
can be computed based on environmental stimuli (full details
are available in the Appendix). The complete framework we
propose then consists in merging the two estimates (internal
and external) to form a biologically inspired perception of the
elapsed time.

It has been shown that a sensory estimate of the passage
of time can be obtained from environmental observations
O [24], [36]. We use a probabilistic expectation of stimulus

change in the environment to compute an estimate of the
elapsed time as in [23], where a Bayesian framework was
proposed to estimate the elapsed time τ from the environmen-
tal data O.

Essentially, we model the joint distribution of the sen-
sory data as Gaussian processes with an Ornstein–Uhlenbeck
(OU) kernel function. We compute the hyperparameters of
the model using Bayesian model selection, and from the
maximum-likelihood principle obtain the estimate τ̂ .

A more detailed explanation about how the elapsed time
estimate can be computed was presented in [21], and a
summary can, for completeness, be found in the Appendix.

E. Summary of the Complete Timing Framework

An agent is navigating the environment and receiving stim-
uli. Using the external timing mechanism, it is able to estimate
the perceived elapsed interval length τ̂ between each stimuli.
Based on the internal timing mechanisms, sets of m decaying
microstimuli features, xt from (2), are deployed when the agent
estimates having received the stimuli (cues and rewards). The
perceived interval τ̂ then conditions the microstimuli features
xt that replicate the dopaminergic activity believed to regulate
timing mechanisms, which influence the Q-values of the state–
action pairs according to (1) and, as can be seen in (8), also
the action at selected by the agent. In summary, this results
in a decision-making framework that incorporates internal and
external timing mechanisms.

We assess the complete timing framework in the next sec-
tion, by analyzing the behavior of the agent when performing
a temporal discrimination task.

IV. SIMULATING THE TIME PERCEPTION FRAMEWORK

As in [21], we design a robot that following the frame-
work presented in Section III, performs sequences of actions
in a temporal discrimination task. We start by presenting the
experimental setup used, then detail on how the framework
is simulated, and finally, the numerical results that highlight
the success of the robot in the task. The success is measured
by the similarity of its actions to the actions performed by
a biological timing agent (an agent with temporal cognition,
which, in this case, is a mouse) in the same task.

A. Experimental Setup

We evaluate the framework proposed in Section III in a
temporal discrimination setup, where the ability of a robot
to distinguish time intervals (durations) is evaluated and
compared to that of mice performing the same task [7].

In the original experiment [7], three buttons are available to
a mouse: “Start,” “Short,” and “Long.” The experiment starts
when the animal presses the former, and two auditory tones,
separated by a certain interval that varies from episode to
episode, are played to the mouse. It then has the possibility
to press the button that corresponds to its estimated interval
length between both tones (Short or Long). A reward of water
or food is given to the animal if the correct button is pressed
(i.e., if the animal correctly estimated the elapsed time between
the two tones).
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Fig. 2. Optimal sequence of actions (top row) performed during an episode and corresponding state transition (bottom row). Once the Start button is pressed,
the environment changes to the Tone state. From there, the agent must perform the “Wait” action until reaching the second “Tone” state, which happens during
a number of Interval states sampled is uniformly from the maximum interval length. After the second Tone state, the agent then performs the Short or Long
action that corresponds to its estimated number of Interval time steps, τ̂ . If the correct action is chosen, the agent receives a positive reward.

We use the same setup for our simulated robot: at each time
step, the environment can be in one of the states S = {Init,
Tone, Interval}, and the robot can perform one of the actions
A = {Start, Wait, Short, Long}. Fig. 2 schematically shows
the optimal sequence of actions in an episode. The number
of “Interval” states is what defines the interval duration τ of
the episode. If we define L ∈ N as the experiment’s maxi-
mum interval duration between tones, then, in each episode,
τ is a realization of a discrete uniform random variable
τ ∼ unif{1,L}. The temporal discrimination task consists of
classifying the interval duration as

{
“Short”, if τ ∈ [

1, 2, . . . , �L
2 �

]

“Long”, if τ ∈ [	L
2 + 1
, . . . ,L

] (9)

where {�(L/2)�, 	(L/2)+1
} is the classification boundary for
L and 	(L/2)
 for L odd. In the numerical experiments below,
we selected the maximum interval duration L as in the real
experiment [7], where 3 s correspond to L = 8 time steps. This
results in Short := τ ∈ {1, 2, 3, 4} and Long := τ ∈ {5, 6, 7, 8}
time steps.

The increased complexity of the problem comes from the
fact that before learning to distinguish between short and long
intervals, the robot first has to compute its estimate of the
elapsed time between the two stimuli τ̂ using the external
timing mechanism from Section III-D. Only then can it use
the estimate to learn the classification task. The robot com-
putes its estimate of the elapsed time between stimuli by
navigating around the environment and gathering data from its
sensors during the interval τ between which the two stimuli
are presented to it.

B. Simulating the Proposed Framework

Following this setup, in the external timing mechanism, we
chose the values of i LIDAR angles of the simulated robot
(emulating the visual system of a mouse) to be the environ-
mental data yt(i) at time t. We estimate the elapsed time τ̂
using the maximum-likelihood parameters computed for the
model of sensory data (see the Appendix). As a result of its
internal timing mechanisms, sets of m = 8 microstimuli fea-
tures xt are deployed when the agent receives each of the two
stimuli, separated by τ̂ time steps. Algorithm 1 summarizes
the complete framework from Fig. 1.

In the next sections, we discuss the key aspects of our
approach to Problem 1. The results specifically for the external
timing estimation can be found in [21].

Algorithm 1 Temporal Discrimination Task
1: Initialize Q(s, a) = 0, for all s ∈ S , a ∈ A, and

w(1), . . . ,w(D) randomly (e.g., w(j) ∈ [0, 1])
2: for each episode do
3: Initialize the state to “Init”
4: for each time step t do
5: Update xt(1), . . . , xt(D) according to (2)
6: if only one “Tone” state has passed then
7: Collect data yt(1), . . . , yt(M)
8: else if both “Tone” states have passed then
9: Estimate the elapsed time, τ̂ , by maximizing (15)

10: Update xτ̂ (1), . . . , xτ̂ (D), according to (2)
11: end if
12: Compute the Q-values according to (1) and choose

at according to (8). Take action at, observe rt, st+1
13: δt ← rt + γ maxa Q(st+1, a)− Q(st, at)

14: wt+1(j)← wt(j)+ αδtet(j), for j = 1, . . . ,D
15: et+1(j)← γ ηet(j)+ xt(j), for j = 1, . . . ,D
16: st ← st+1
17: end for
18: Until st is terminal
19: end for

Fig. 3. Evolution of the TD error throughout three episodes with τ = 2 time
steps in different phases of learning. Unsurprisingly, the more the agent has
learned, the more it expects a reward after correctly classifying the interval
(t = 4), leading to a decreasing TD error at the end of the episode and an
increasing one upon receiving the second tone.

C. Results on the Inner Core Mechanisms of the Agent

We begin by presenting results that bring insight into the
robot’s inner mechanisms when using our framework, such as
the TD error and the Q-values. The time step values on the
x-axis correspond to the state numbers from Fig. 2.

Fig. 3 shows the evolution of the TD error throughout three
successful episodes with the same interval duration, but each
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Fig. 4. Evolution of the Q-values throughout two episodes with different
interval durations between tones. In the top figure, τ̂ = 1 (short interval), and
in the bottom one, τ̂ = 8 time steps (long interval). The chosen action at each
time step is the one with the highest Q-value at that moment. At the end of
the episode, different actions have the highest Q-value, in agreement with the
corresponding duration.

at a different training phase. The represented episodes have
τ = 2 time steps, which means that the second tone takes
place at t = 4 where it is followed by the reward. The figure
shows that the TD error from (5): 1) decreases over time as the
agent learns the optimal policy when the reward is delivered
and 2) increases when the second tone is played. This means
that previous (conditional) stimuli teach the agent to predict
reward delivery. In other words, the second tone functions as
a conditional stimulus from classical conditioning [28].

Fig. 4 shows a visual representation of the evolution of the
Q-values computed from (1) during one episode with τ̂ = 1
(short interval), and one with τ̂ = 8 time steps (long interval),
after the agent has learned the optimal policy. At each time
step, the action with the highest Q-value is marked with a
circle and is the one selected without exploration. The resulting
sequence of actions is the optimal one shown in Fig. 2 for
both episodes, which means that based on its time estimate,
the agent learns to act appropriately.

D. Results on the Replication of the Behavior

The following results illustrate the behavior of the agent in
the task. To simplify the comparison with the performance of
mice in the original experiment, we use the seconds elapsed
between tones in the x-axis to present the results.

The agent learns to always act correctly until receiving the
second tone. However, even once the training phase is over, it
is not always able to accurately classify the interval length of
the episode since it does not always select the correct action
at that moment. Fig. 5 shows the number of episodes in which
it misclassified the interval duration. This happens more often
for intervals closer to the boundary between Short and Long
(around τ̂ = {1.5, 1.8} s). These results show a trend also

Fig. 5. Number of misclassified episodes according to the interval duration.
The total number of misclassifications is 327, the average is 1.65 s, and the
median is 1.8 s. As for humans and animals, the intervals in the boundary
between classes are the ones most commonly misclassified.

Fig. 6. Psychometric curves corresponding to the empirical probability of
intervals being classified as Long. The psychometric curve of the agent (in
blue) using our framework closely matches that of the mouse (in orange). The
latter was averaged over ten experiments and fitted using a logistic function.

exhibited by humans and animals [8], which is verified for
any maximum interval length.

Fig. 6 shows the empirical probability (psychometric curve)
of different agents classifying different intervals as Long.
The average performance of a mouse (in orange, from [7])
is qualitatively similar to that of an agent using our time
perception framework (in blue).

E. Summary of the Results

The above numerical experiments point to the following
conclusion.

Result 1: Our robot demonstrates the ability to classify
interval durations similar to that of mice, which validates the
capability of our framework to use temporal information for
performing time-aware actions.

More specifically, Result 1 is supported by the similarity
between the timing mechanisms of the robot and mice.

1) The elapsed time is successfully computed from envi-
ronmental data, and uncertainty in the estimation of the
interval duration increases with the length of the interval
(scalar property [37], [38]).

2) The behavior of the TD error of our model replicates
the reward prediction error of the neural dopaminergic
system (it decreases with reward expectancy).

3) The uncertainty in the classification of intervals is higher
on the boundary between classes, as for humans and
animals.
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4) The psychometric curves of our agent closely match the
one of mice.

V. ESTIMATING TIMING ASPECTS FROM BEHAVIOR

In the previous sections, we: 1) proposed a framework for
replicating mechanisms of time perception and 2) showed
that it provides results consistent with biological principles,
answering Problem 1. Our next goal is to exploit this frame-
work to gain more insight into characteristics of the brains of
humans and animals, answering Problem 2.

We start by presenting characteristics that might be of
interest to estimate and other works that studied them. We
then detail our proposed method and conclude with numerical
experiments.

A. Preliminaries

In the previous sections of the article, we have demon-
strated a good correspondence between real-world experiments
on biological agents (i.e., mice) and that of artificial simu-
lated agents. In other words, our mathematical framework can
arguably model such behavior well. Since there are a num-
ber of free parameters in the reinforcement learning model,
we could use the framework “in reverse” to deduce important
biological characteristics of the mice.

An example of a parameter of interest to estimate in the
framework presented in Section III is the number m of micros-
timuli. The number of microstimuli present in each agent
conditions its ability to distinguish time intervals. This is the
case since with too few microstimuli, the agent has a too scarce
perception of time and is not able to distinguish different time
intervals well. This is discussed further as follows.

Apart from the number of microstimuli, other parameters of
the TD learning framework dictate the agent’s behavior and
can be desired to estimate—e.g., the learning rate α, the dis-
count rate γ , exploration rate ε, and the exploration decay ρ.
Other parameters of the microstimuli framework can also be
estimated, such as the microstimuli decay ξ , and the basis
functions center ν and width β. To simplify, we focus on
the estimation of one or more of these parameters, under the
assumption that they are static and the others are known.

Many works have studied the question of how to infer
biological parameters from the agent’s behavior [39]–[41],
including in reinforcement learning models, but not in a way
that allows temporal information to be taken into account.

B. Proposed Method for Parameter Estimation

To answer Problem 2, we reformulate the question posed
to: given a certain behavior, find the parameter values (broadly
denoted θ here) that best explain it.

Here, the behavior corresponds to the policy followed
by the agent—that is, the actions taken at different states.
Since different parameters induce different behaviors, the most
straight-forward approach would consist of analyzing the cor-
respondence between the state–action probabilities induced by
the parameters and the agent’s behavior. This approach is,
however, not possible for time-dependent problems since the
states do not encode temporal information. The approach we

Fig. 7. Effect of the number of microstimuli m on the behavior a of the
agent for different time intervals between two stimuli, τ . These statistics are
the base of our model (10) and were computed over one training simulation
with 2000 episodes.

propose consists of adding to this formulation the variable τ
that encodes time when analyzing the behavior of the agent
through the actions a performed. Our model is

p(a|τ, θ) (10)

where the actions a are modeled as a stochastic vari-
able described by this probability function. It represents
the distribution of actions performed with parameters θ

(e.g., θ = [m, α, ε, . . . ]) on an episode with time interval τ .
This model can be obtained from the empirical probability

distribution using simulation data, and is shown in Fig. 7 for
θ being the number of microstimuli θ = m. The figure shows
how the ratio between certain actions changes according to the
parameter (namely, m = 1, 4, and 8 microstimuli). For exam-
ple, the proportion of short and long actions is only correct for
m = 8 microstimuli. This change can also be observed in the
other variables mentioned in Section V-A, although for some
more noticeably than others.

Observing the behavior of agents in this context means
then collecting information about the actions they perform at
different time intervals. Thus, we collect a history of actions

H = [(
τ1, a1,1

)
, . . . ,

(
τ1, a1,N1

)
(
τ2, a2,1

)
, . . . ,

(
τ2, a2,N2

)
, . . .

]
(11)

where different episodes k correspond to different time
intervals τk. At episode k, Nk actions are performed,
ak,1, . . . , ak,Nk .
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Fig. 8. Normalized likelihood. The likelihood of each number of microstimuli
increases as it approaches the true value. The maximum-likelihood estimate
m̂ (14) coincides with the true value, m = 4.

We write the negative log likelihood of history H given
parameters θ as

L(H; θ) = −
∑

k

Nk∑

n=1

log p
(
ak,n | τk, θ

)
(12)

since

p(H | θ) ∝ p
({

ak,n
} | {τk},m

)

=
∏

k

Nk∏

n=1

p
(
ak,n | τk, θ

)
(13)

assuming conditional independence among individual actions
given the parameters and the corresponding episode duration.
The maximum-likelihood estimator is then

θ̂ = arg min
θ

L(H; θ). (14)

This method has a limitation for imbalanced data sets,
where, for distinct episodes k, the number of actions performed
Nk is very different.

Nevertheless, per the above we can estimate different
parameters in the framework from empirically observing
action distributions and computing the maximum-likelihood
estimate.

C. Numerical Experiments

We use the method described in Section V-B to estimate the
number of microstimuli (θ = m) of an agent performing the
same task from Section IV-A.

Fig. 8 shows the normalized average likelihood (12) com-
puted over ten Monte Carlo simulations of 2000 episodes for
the different numbers of microstimuli, when the true value is
m = 4. It can be seen that the likelihood of each number of
microstimuli increases as it approaches the true value, and that
the maximum-likelihood estimate is correct.

Since we are using a discrete model, we define accuracy as
the percentage of times that the maximum-likelihood estimate
is the correct solution (θ̂ = θ ). We compute the likelihood
over a number of microstimuli m in the set m = {1, . . . , 8} in
all results presented. We averaged the training of the model
in (10) over 10 train simulations of k = 2000 episodes. When
testing it in 30 test simulations, a correct maximum-likelihood
estimate (14) was obtained 100% of the time (m̂ = m).

Fig. 9. Evolution of the percentage of successes (accuracy) of the estimator
as the number of test episodes increases. After around 1000 test episodes,
the original estimator (that admits exploratory actions, in purple) has a 100%
accuracy while the estimator that ignores exploratory actions (in orange) has
the same accuracy after only 800 episodes.

The above numerical experiments point to the following.
Result 2: Using the maximum-likelihood estimator, one can

correctly use the behavior of the agent to infer parameters
intrinsic to the agent’s internal timing mechanisms.
Let us now analyze some properties of the proposed method.

1) Number of Testing Episodes: Fig. 9 shows the impor-
tance of the number of test episodes for the accuracy of the
estimator. More specifically, the purple line shows how the
accuracy (the percentage of times that m̂ = m) increases (aver-
aged over 300 test simulations to improve the precision) as the
number of test episodes increases. This result is related to the
level of exploration of the agent studied next, since the reason
for the low accuracy in low numbers of test episodes is the
exploratory (i.e., random) behavior of the agent before learning
the optimal policy.

2) Exploration: Since our model uses the statistics of all
actions performed throughout all episodes, its accuracy is
affected by the agent following the optimal policy or perform-
ing exploratory actions, as previously shown. If the exploration
parameters ε and ρ of the agent are known (or estimated
using the method in Section V-B with θ = ε, or directly
from the agent’s behavior), we can train our model only
with knowledge-exploiting behaviors. This corresponds to only
observing the actions performed for small values of ε (e.g.,
ε < 0.01).

The orange line in Fig. 9 shows that, as expected, observ-
ing only knowledge-exploiting actions is advantageous for the
accuracy of the estimator, increasing for a comparative number
of testing episodes.

3) Sensitivity: The parameters inherent to the agents (that
we assume static and known) can be estimated but are typically
not known with certainty. To explore the sensitivity of our
estimator to the uncertainty in the parameters, we perturb them
when estimating the number of microstimuli.

Let us choose α and γ as our parameters with uncertainty.
We perturb the true values with noise when training the model
(over five train simulations), and compute the average accu-
racy between the noisy values (e.g., α ± noise) over five test
simulations. Fig. 10 shows the average accuracy for percent-
ages of noise between 0% and 80% in the parameters. The
large discrete steps seen on the accuracy are due to the average
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Fig. 10. Evolution of the accuracy of the estimator as the uncertainty (noise)
in the parameters α and γ increases.

TABLE I
VARIATION OF THE ACCURACY WITH THE UNOBSERVED PARAMETERS

being made between two very different values of the parameter
(± noise). To obtain a smoother curve, the noise could instead
be sampled from a uniform or Gaussian distribution.

We conclude that the method is robust to small perturbations
in both of the parameters studied, and a similar analysis can
be done for other parameters of interest.

4) Scalability: Analyzing the behavior of the agent for
many different parameter values and different time intervals
can be computationally heavy and impractical to implement
in real-life experiments. This problem is aggravated for large
action spaces. In this section, we evaluate the scalability of
the estimator by exemplifying its behavior for situations where
only specific actions or certain time intervals between tones are
observed. For example, it can either be: 1) a whole action (e.g.,
the wait action is not counted); or 2) a whole time interval
(e.g., intervals of τ = 3 s are not tested); or even 3) random
combinations of both, which are not observed. Whichever the
situation, some intervals and actions have a higher impact for
the accuracy of the estimation than others. For example, for
this particular task, the short and long actions present more
information about the knowledge of the agent than others. As
can be seen in Fig. 7, their probability distributions change
significantly according to the number of microstimuli.

Table I shows the accuracy of the estimator computed when
different sets of parameters are removed over 50 test sim-
ulations. For example, the second row corresponds to not
observing the actions of the agent in time intervals between
2 and 8 time steps. An accurate estimate of the number of
microstimuli is still obtained 78% of the time, showing that
the method is flexible with the testing situations.

VI. CONCLUSION

This article investigated characteristics of neural
mechanisms involved in time perception, taking into

consideration multiple aspects of these timing mechanisms
to design an end-to-end decision-making framework, whose
parameters can be inferred from the behavior of an agent.

A. Summary

The first main focus of this work was to create a time per-
ception framework capable of producing time-aware actions
(Section III). This framework consists of a combination of two
known timing sources: 1) internal neuronal mechanisms and
2) external stimuli. For the former, we replicate dopaminergic
behavior by means of a TD learning algorithm with a feature
representation called Microstimuli. For the later, we estimated
of the passage of time from environmental data by exploiting
results from Gaussian processes.

We validated the framework in a simulated robot, in
Section IV, and compared its behavior to that of real-world
mice. The ability of an agent using the proposed algorithm to
perceive the passage of time and succeed in time-dependent
tasks was validated in numerical results by the comparison
with the behavior of real animals (see Result 1). We presented
coherent results in both sources of time perception: both in its
instrinsic mechanisms of interpreting time, as well as in its
performed actions. We concluded the former by identifying
features known to be present in humans and animals, and the
latter by comparing its actions with those of mice in the same
task.

The second main focus of this work was a method presented
in Section V to infer biological insight about the framework
used by agents for time perception. We used a maximum-
likelihood estimator to deduce biological characteristics of the
timing functions of agents by estimating parameters they use
for perceiving time. In particular, we showed that we are able
to estimate the number of microstimuli of an agent given its
empirical action probability distribution, using the maximum-
likelihood estimator (see Result 2). We further showed: 1) how
the estimate improves with the number of testing episodes;
2) how knowing the exploration rate of the agent improves the
estimation process; 3) that uncertainty in the other parameters
does not affect greatly the estimate; and 4) that the method
is scalable and works even with reduced amounts of testing
observations.

B. Future Work

There are several interesting extensions that we would
like to investigate in future work. First, implementing the
framework on a real robot and having it perform the
same real-world task as mice would give valuable experi-
mental data that can be used to validate and modify our
proposed framework. Since the mechanisms controlling tem-
poral judgments are believed to vary across time scales, we
would like to study the behavior of our framework out-
side the time scale of seconds and study how it can be
adapted.

Second, it would be highly interesting to estimate biological
characteristics of various animals (and humans) by using the
algorithms discussed in Section V. By observing their actions,

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 12,2023 at 13:08:07 UTC from IEEE Xplore.  Restrictions apply. 



LOURENÇO et al.: BIOLOGICALLY INSPIRED COMPUTATIONAL MODEL OF TIME PERCEPTION 267

we could estimate their intrinsic timing parameters, and val-
idate them by comparing them with the actions of simulated
agent with those parameters. In that case, we should also con-
sider the estimation of dynamic parameters. Another relevant
question concerns how knowledge about the animal’s inher-
ent parameters can be obtained by observing its behavior in
different tasks.

Finally, it would also be interesting to investigate how more
sophisticated methods for inverse learning problems can be
combined with the timing framework discussed in this article.
For example, methods from inverse reinforcement learning and
revealed preferences (e.g., [42] and [43]) or inverse filtering
(e.g., [44] and [45]) could be used to infer the internal beliefs
of the agents based on their behavior.

APPENDIX

EXTERNAL TIMING

Ahrens and Sahani [23] proposed a method to estimate the
elapsed time τ from environmental data O using a Bayesian
framework. Under uniform prior, the maximum-likelihood
estimate of the elapsed time is given by the maximum of
p(O|τ) [46] and corresponds to the probability of observing
O = {yt(i)}Mi=1 during the interval τ . This probability can be
modeled as a zero-mean joint Gaussian distribution over the
N observations of all M independent sensors [47]. With t1 = 0
and tN = τ , this is given by

p(yt(i)|τ) = N (yt(i); 0,K�) = e− 1
2 yt(i)K

−1
� yT

t (i)√
det(2πK�)

. (15)

This joint distribution includes a kernel function K� that is
parametrized by � and expresses the variation of the process
between time steps. It has been observed that the power spec-
trum of the observations (the rhythm of change of the natural
environment) resembles that of the OU function [48]

Kλ,σ (τ ) = e−λ|τ | + σ 2ψ(τ). (16)

Here, ψ(0) = 1 and ψ(τ) = 0 for τ = 0, and � = [λ, σ ]
are the hyperparameters of the model. We estimate them using
Bayesian model selection, by maximizing the logarithm of the
likelihood with respect to � [46]. This involves computing the
respective derivatives

∂

∂�j
log p(yt(i)|�) = −1

2
tr
(
φφT − K−1

�

)∂K�
∂�j

(17)

where φ = K−1yt(i).
Hence, the external timing problem is solved by identify-

ing the values for λ and σ that make the properties of the
Gaussian process most similarly approximate the ones of the
environmental data. The robot’s estimate of the elapsed time
between the two stimuli τ̂ is thus obtained by computing the
maximum-likelihood estimate of (15).
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