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Abstract A hidden Markov model (HMM) comprises a state with Markovian dynamics that can

only be observed via noisy sensors. This paper considers three problems connected to HMMs, namely,

inverse filtering, belief estimation from actions, and privacy enforcement in such a context. First, the

authors discuss how HMM parameters and sensor measurements can be reconstructed from posterior

distributions of an HMM filter. Next, the authors consider a rational decision-maker that forms a

private belief (posterior distribution) on the state of the world by filtering private information. The

authors show how to estimate such posterior distributions from observed optimal actions taken by

the agent. In the setting of adversarial systems, the authors finally show how the decision-maker can

protect its private belief by confusing the adversary using slightly sub-optimal actions. Applications

range from financial portfolio investments to life science decision systems.

Keywords Belief estimation, counter-adversarial systems, hidden Markov models, inverse decision

making, inverse filtering.

1 Introduction

Nowadays, model-free techniques such as reinforcement learning aim to learn a controller
policy directly from data of a process to be controlled. These techniques may require an
unreasonably large number of interactions with the process to determine a satisfying performing
controller. This is because the data has to supply the lack of prior knowledge on the process
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usually encoded in a model. Such models can, in many control applications, be identified
from optimally designed input and output data[1, 2]. However, for more integrated intelligent
systems, the behaviour of the systems can only be indirectly observed from alternative sources
such as state observers, beliefs, or control decisions.

Since the pioneering work of Kalman[3], there have been numerous applications of inverse
optimal control. More recently[4, 5], the inverse problem for discrete-time Linear Quadratic
(LQ) Regulators over finite-time horizon has been considered, in which the identifiability of the
corresponding model structure is fully studied. Specifically, the unknown parameters in the
quadratic objective function are reconstructed using the given discrete-time linear system dy-
namics and its noisy measurements of the output. In [6], the continuous-time inverse quadratic
optimal control problem over finite-time interval is studied, in which the first complete result
on the necessary and sufficient conditions for the existence of the corresponding standard lin-
ear quadratic cost functions is obtained. The problem of inverse reinforcement learning for
Markov decision processes concerns how to reveal a reward function from observed optimal
behaviour, [7]. An important application concerns finding the reward function of an expert for
apprenticeship learning settings[8].

The corresponding problem of inverse filtering concerns how to recover the stochastic dy-
namics from observations of the optimal state estimator, including its uncertainty. Inverse
filtering for hidden Markov models was first studied in [9]. There is a family of inverse prob-
lems that depend on what is unknown. A complete solution to this problem is presented in [10].
The inverse Kalman filtering problem for linear Gaussian systems has been studied in [11], and
is related to the inverse LQ control problem.

The work presented in this paper builds on results for inverse filtering. We present tools
for learning a model of a process from an alternative source: data from a filter acting on it
or observed optimal actions. The algorithms will be described within the context of “counter-
adversarial systems”. Figure 1 shows the structure of the problems to be studied.

World Sensor
Obser-

vation

BeliefState
Filter Policy

Action

Figure 1 Schematic problem description

A sensor measures the current state of the world (or system), and generates observations (or
data). This data is filtered to compute the posterior distribution of the state. This forms the
belief of an agent, who then decides on an action according to an optimal policy. The objective
of this paper is to study the corresponding inverse problems for systems described using hidden
Markov models, from the corresponding estimation and optimization problems.

The main contribution of this paper is to describe solutions to the following three questions.
— The first question is how to estimate the world and sensor model of an agent based on

observed posteriors/beliefs?
— The second question is how can the agent’s belief be estimated from observed actions?
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— The third question is how to perform slightly sub-optimal decisions in order to make it
difficult for a possible adversarial agent to estimate the private belief ?

The first problem has been previously studied in the context of inverse filtering[9, 10]. The
presented solutions to the second and third problems build on the conference papers [12–14].

2 Background

In this section, we present the notation used throughout the paper and introduce the Markov
models considered, namely Markov chains[15] and hidden Markov models[16], which are widely
known and have been extensively studied in the literature for more than fifty years.

2.1 Notation

All vectors are column vectors unless transposed, ·T. The vector of ones is represented as 1.
The element at position i of a vector is denoted [·]i and at row i and column j of a matrix as [·]ij .
The operator diag(·) : R

n → R
n×n applied to a vector results in the placement of the vector

on the diagonal of a matrix with all other elements zero. The indicator function I{·} equals
one if · is true and zero otherwise. We employ z0:k as shorthand for the sequence z0, z1, · · · , zk,
and define zk+1:k = ∅. Inequalities (≤,≥) between vectors are evaluated element-wise. The
probability of event · is given by Pr[·] and the probability density (or mass) function by p(·).
The expected value of a random variable X is denoted as E{X}. The set of positive real
numbers is denoted as R+. The symbol ∼ means “distributed according to”.

2.2 Markov Chains, Beliefs in HMMs, and Policies

In this section we explain in bold each of the blocks of the diagram in Figure 1.
A discrete-time stochastic process is a sequence of random variables {xk, k = 0, 1, · · · }.

Each element {1, 2, · · · , X} of the state-space X of the stochastic process is called a state
xk ∈ X of the process, where k represents its evolution over time. The Markov property asserts
that the state xk of the process depends only on the previous state, xk−1. A stochastic process
that satisfies the Markov property is called a Markov chain. The probabilities of transitioning
from one state to another can be summarized in the X × X transition matrix, P :

[P ]ij = Pr[ xk+1 = j|xk = i ], (1)

with i, j ∈ X and where 0 ≤ [Pk]ij ≤ 1 and
∑X

j=1[P ]ij = 1, or, equivalently, P1 = 1, and in
which the dynamics are assumed to be time-invariant.

Markov chains assume that the state of the system (interpreted as the state of the world, or
the agent’s external environment later) is fully observable. However, in most settings this is not
the case. Hidden Markov models (HMMs) are finite-state Markov Chains measured through
a sensor via a noisy observation process, which means that the state of the system evolves
stochastically with time, but is only partially rather than fully observable. The unknown states
are denoted hidden states, xk ∈ X , and the observations yk ∈ Y. HMMs are therefore
parametrized by transition probabilities, P , just as Markov chains, but also by observation
likelihoods B, that determine the probability (or probability density, if Y is a continuum) of
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an observation yk being obtained in state xk. The Markov property still applies to the hidden
states, as in (1). In general, the observation likelihoods are conditional probability densities,
but for a finite-dimensional observation process, Y = {1, 2, · · · , Y }, they can be summarized in
an X × Y observation matrix with elements:

[B]xy = Pr[ yk = y | xk = x]. (2)

Here, x ∈ X and y ∈ Y. Moreover, B ≥ 0 and
∑Y

y=1[B]xy = 1 or, equivalently, B1 = 1.
Given an HMM and a set of observations Ok = {y1, y2, · · · , yk}, the problem of estimating

the hidden state of the system at a certain time given observations up to (and including) that
point in time, is called filtering. In Bayesian state estimation, optimal filtering techniques
can be used by the agent to solve the filtering problem. Examples are Kalman filters, if the
observations are generated by a linear and Gaussian process[17], and HMM filters, if the state-
space is discrete[16]. The filtering process can, however, depend on more subjective and abstract
information, such as the beliefs and opinions of an investor listening to rumors or gossip.

The HMM filter is a recursive algorithm for computing the posterior distribution πk ∈ R
X ,

also referred to as the belief :
[πk]i = Pr[ xk = i | y1:k ], (3)

where π ≥ 0 and 1Tπ = 1. Given knowledge of the model parameters P and B, the iterative
update of the belief is given by the function T (πk − 1, yk) as

πk = T (πk−1, yk; P, B) =
Byk

PTπk−1

1TByk
PTπk−1

, (4)

where By = diag(Bey) ∈ R
X×X is a diagonal matrix of the yth column containing the obser-

vation matrix B. More details can be found in [16].
Based on the beliefs or preferences, decision-making is the process of performing decisions

by choosing one amongst several alternatives. Therefore, the diagram from Figure 1 is extended
with a component designated as policy, G, where uk ∈ U is the action performed based on
the current belief πk and U is the decision set. Assuming U to be a finite set of actions, G is
in full generality a probabilistic policy: given a belief π, it assigns a probability to each action
Pr[uk = u|πk = π]. In many applications, the policy reduces to a deterministic policy (where
the distribution G is a degenerate probability mass function).

To summarize, the dynamics of filtering and decision-making in HMMs that are schemati-
cally represented in Figure 1 are mathematically given by

world: xk ∼ P, x0 ∼ π0,
sensor: yk ∼ B,
filter: πk = T (πk−1, yk; P, B),
policy: uk ∼ G.

(5)

3 Inverse Filtering

In Subsection 2.2 we have stated the filtering problem as: Given observations about a system,
what can be said about its state? This problem can be solved in a recursive manner using an
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HMM filter, as described by (4).
The inverse filtering problem, on the other hand, consists of estimating information about

the system from the belief vector of a filter applied to the system. This can be formulated as:

Problem 3.1 (General Inverse Filtering) Given π1, π2, · · · , πN , what can be concluded
regarding:

• the parameters Pfilter and Bfilter of the HMM filter†?
• the observations y1, y2, · · · , yN?
• the true transition and sensor matrices P and B of the HMM?

This problem is schematically represented in Figure 2.

System Sensor
Observation PosteriorState

Filter
P B T

xk yk πk

Figure 2 A sensor measures the current world state, xk, and obtains information yk. By

filtering this information, using (4), an agent obtains a private belief πk. The

inverse filtering problem consists of estimating characteristics of the HMM based

on knowledge about the posterior distribution

Before presenting our main result on inverse filtering, the following remarks are important:

• If only the posteriors π1, π2, · · · , πN are available, but no prior knowledge on the structure
of P and B is given, it is not possible to recover the actual observations y1, y2, · · · , yN ,
even if the set Y was known, since exchanging, say, the values 1 and 2 in an observation
sequence is equivalent to exchanging the first and second columns of B. Thus, in the
most optimistic scenario, we can only hope to recover the observation sequence up to
relabelling.

• If the observation sequence could be exactly recovered (up to relabelling), one could
run an HMM parameter estimation algorithm such as EM (Baum-Welch)[18] or spectral
learning[19] on such sequence in order to estimate P and B. Thus, the important question
that remains is whether one can recover Pfilter, Bfilter and y1, y2, · · · , yN .

The following result provides a positive answer to the question in the previous paragraph[10]:

Result 1 Assume that P , B are positive matrices. Then, Pfilter, Bfilter and y1, y2, · · · , yN

can be recovered from a finite number of measurements k using a nullspace clustering algorithm‡.
†In this section, to allow the HMM filter to be designed based on a wrong model of the HMM whose state is

being estimated, we will denote by Pfilter and Bfilter the respective transition and sensor matrices used by the

HMM filter, instead of the P and B matrices that appear in (4), respectively.
‡The validity of this result depends on the exactness of the convex relaxation used in the nullspace clustering

algorithm.
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Note that the theorem does not require that Pfilter = P or Bfilter = B, i.e., the HMM filter
does not need to be perfectly matched to the HMM it aims to estimate!

We now provide a rough idea of the derivation of Result 1, and a sketch of the nullspace clus-
tering method that can solve the inverse filtering problem. The HMM filter update equation (4)
can be written as

(πT
k−1 ⊗ [πk1

T − I]) vec(diag(bfilter
yk

)PT
filter) = 0,

where ⊗ denotes the Kronecker product, and vec is the (column) vectorization operator. Accord-
ing to this equation, the matrix (πT

k−1⊗[πk1
T−I]) is known for each k, while vec(diag(bfilter

yk
)PT

filter)
lies in its nullspace. One can recover vec(diag(bfilter

yk
)PT

filter) by “clustering” matrices (πT
k−1 ⊗

[πk1
T−I]) into groups such that the intersection of the nullspaces of the matrices in each group

has dimension equal to 1. Once a basis vector for each of these common nullspaces has been
determined, vec(diag(bfilter

yk
)PT

filter) can be found by normalization (see [10] for details), and then
Pfilter and Bfilter can be computed by noticing that

∑Y
i=1 vec(diag(bfilter

i )PT
filter) = vec(PT

filter),
which gives P , and from this one can determine the columns of B.

To cluster matrices (πT
k−1 ⊗ [πk1

T − I]), one can solve the following convex optimization
program, which is a convex relaxation of the nullspace clustering problem we aim to solve:

min
{wk}N

k=1

N∑

i=1

N∑

j>i

‖wi − wj‖∞

s.t. (πT
k−1 ⊗ [πk1

T − I])wk = 0, for k = 1, 2, · · · , N,

wk ≥ 1, for k = 1, 2, · · · , N.

The solutions w1, w2, · · · , wN of this problem correspond to vectors in the nullspace of each
matrix (πT

k−1 ⊗ [πk1
T − I]) satisfying the condition stated above.

Note that computing Pfilter, Bfilter and the observations y1, y2, · · · , yN is not an estimation
problem, in the sense that there is no noise to filter out, thus these quantities can be obtained
exactly with an (almost surely) finite number of samples! A necessary condition for this is
that the number of samples must be large enough so that the (a priori unknown) observation
sequence y1, y2, · · · , yN includes all possible values in Y.

In case the posteriors πk are contaminated with noise, it is possible to modify the clustering
algorithm above to estimate the Pfilter, Bfilter matrices, using a technique such as spherical
K-means [20]. See [9] for a version of such algorithm to recover Bfilter when Pfilter is known.

The problem of inverse filtering has been extended by the authors in [11] to the case of
linear Gaussian systems, where the HMM filter is replaced by a Kalman filter.

3.1 Example: Sleep Tracking

To illustrate an application of inverse filtering, we provide in this section an example related
to sleep tracking; see [9] for further details. Doctors have classified the sleep stages of humans
into five categories: wake, S1, S2, slow wave sleep (SWS ) and rapid eye movement (REM ).
These stages are not directly measurable, but commercially available sleep trackers can estimate
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them through measurements of hearth rate, wrist movements, electroencephalograms (EEG),
or other means, by implementing an HMM filter where the underlying state is the current sleep
stage of the user.

Inverse filtering can be used in this setup to diagnose possible malfunctioning of a sleep
tracker. For simplicity, we will assume that the transition matrix P is known, since manually
labeled data is publicly available from which P can be estimated.

By suitably discretizing EEG data of patients from which sleep stages have been manually
tagged by doctors (which will be assumed as the true underlying state of an HMM), an HMM
filter has been fitted to the data, which resembles a sleep tracker. Figure 3 shows the sleep pat-
tern of a patient, as well as the mean of the posterior distribution provided by our HMM filter.
The results of applying inverse filtering to this data, as a function of the standard deviation of
the noise present in the posterior of the HMM filter, are presented in Figure 4. As this figure
shows, inverse filtering can be highly successful in recovering the observation sequence as well
as the sensor matrix when the noise level is reasonably small.

Figure 3 Sleep pattern of a patient over one night: Current sleep stage (in black), and mean

of the belief distribution delivered by HMM filter (in red)

Figure 4 Top plot: Fraction of correctly recovered observations as a function of the standard

deviation of the noise contaminating the belief, σ. Bottom plot: Error in the

estimation of the sensor matrix B, as a function of σ



1808 LOURENÇO INÊS, et al.

4 Belief Estimation from Decisions

The inverse filtering problem presented in Section 3 showed that from the knowledge of
the private belief of the agent, different characteristics of the model can be reconstructed.
However, access to the agent’s private belief is not always guaranteed. Hence, the following
question arises:

Problem 4.1 How can the private belief of an agent be estimated by observing its deci-
sions?

The problem of reconstructing the beliefs of an agent establishes a basis for solving inverse
filtering problems, such as the ones from Section 3, and, from there, questions such as how
accurate are the adversary’s sensors and how should we design our state sequence (transition
kernel) to as accurately as possible estimate the adversary’s sensors or confuse it. It is also
necessary for, in a realistic setup, analyzing its behaviour as well as predicting its future actions.
This problem has practical implications in, not only electronic warfare (where predicting the
future actions is central to establishing counter-measures) and cyber-physical security, but also
in, e.g., radar calibration and interactive learning[21].

Based on some cost function (or via other means), the adversary acts according to a policy
G (which can be either stochastic or deterministic, as discussed in Subsection 2.2). We present
answers to Problem 4.1 in two different settings. In Subsection 4.1, we study an approach
for estimating the private beliefs given knowledge of the observed actions and of the state
sequence. For this case, we present the optimal smoother for inverse filtering in adversarial
systems, obtaining a full probability distribution over the possible beliefs. In Subsection 4.2,
we present an alternative approach for estimating the private belief of the decision-maker based
on its actions, this time without any assumptions on the belief generating process. We derive a
set of private beliefs that are consistent with the observed actions, and present results specialized
in a case-study on regime-switching portfolio allocation.

Figure 5 represents the general scheme considered in both parts of this section where the
green arrow represents the question posed in Problem 4.1.

System Sensor
Observation PosteriorState

Filter
P B T

xk yk πk Policy

G

Action
uk

Figure 5 Acting rationally according to a certain policy and its private belief πk, the agent

optimizes a cost function and performs an action uk. The inverse problem here

consists of estimating the private belief based on the action performed

4.1 Estimating Private Beliefs Using a Bayesian Approach

This section considers a way of estimating an agent’s private beliefs in a Bayesian frame-
work, where the generative model of the agent’s beliefs is known, and the policy can be of a
general structure. More specifically, we consider fixed-interval smoothing problems for counter-
adversarial autonomous systems, where an agent i) measures our current state via a noisy
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sensor, ii) employs an autonomous filtering and control system that computes a posterior es-
timate (belief) of our state and iii) takes an action that we can observe based on its control
policy[21, 22]. Mathematically, this corresponds to a game between two players (us and the ad-
versary), where the knowledge of each player is the following. We know xk (our true state), the
adversary knows yk and πk (its measurement and state estimate), and both can see the action
uk selected by the adversary. The dynamics of the game are given by the model presented in (5)
and as described throughout Section 2.

Based on observed actions u1:N and knowledge of our states x0:k, our goal is to estimate
the past and present beliefs of the adversary. Formally, the central question here is posed as a
reformulation of Problem 4.1 as:

Problem 4.2 Suppose the probability distributions P , G, and B are known, as well as
the initial belief π0. Given knowledge of our state sequence x0:N and recorded actions of the
adversary u1:N , what can be said about the corresponding (for us, unobserved) past and present
beliefs πk of the adversary?

4.1.1 Optimal Smoother for Estimating Beliefs

Given measurements up to time N ≥ k, the goal of Problem 4.2 is to determine the condi-
tional distribution of the belief at time k. This is a well-studied problem for partially observed
dynamical models, generally referred to as the smoothing problem[16, 18]. It corresponds to
computing the (fixed-interval) smoothing distribution

αk|N (π) def.= p(πk = π|u1:N , x0:N ), (6)

which computes the posteriors over all the past beliefs, where N is fixed and 1 ≤ k ≤ N . Note
that αk|N (·) is a density over Π, where Πk is the recursive sequence of belief sets:

Πk
def.= {T (π, y) : y ∈ Y, π ∈ Πk−1} , (7)

initiated with Π0 = {π0}. Our approach builds on [21] and relies on the optimal inverse filter
(which computes the posterior over the current belief given a state-sequence and actions). The
optimal smoother we compute includes more information than the filter, yielding therefore more
accurate estimates (in a mean-squared error sense)[17].

Theorem 4.3 For a discrete adversarial system, the smoother αk|N (π) can be evaluated
via

αk|N (π) =
βk|N (π)αk(π)

∑
z∈Πk

βk|N (z)αk(z)
, (8)

for π ∈ Π k, where αk(π) is the optimal inverse filter αk(π)
def.
= p(πk = π|u1:k, x0:k) that was

presented in [21] for the general case and in [14] for discrete systems, and which is also denoted
the forward variable. The backward variable, βk|N (π), can be computed recursively via

βk|N (π) =
∑

z∈Πk+1

Gz,uk+1 [P ]xk,xk+1 [B]xk,yπ,zβk+1|N (z), (9)

for π ∈ Πk, initialized by βN |N(π) = 1 for all π ∈ ΠN .
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In summary, to evaluate the smoothing distribution αk|N (π) for a discrete system, we:

i) compute the optimal inverse filter αk(π) from [14];
ii) compute the backward variables βk|N (π) via the recursion (9);
iii) combine the filter αk(π) and βk|N (π) using (8).

4.1.2 Numerical Results

We consider a three-state system so that πk ∈ R
3, and the filter αk(π) and smoother αk|N (π)

yield probability mass functions (pmfs) over the 2-dimensional unit simplex.
In particular, we consider the following randomized adversarial system:

P =

⎡

⎢
⎢
⎣

0.7 0.2 0.1

0.1 0.4 0.5

0.1 0.1 0.8

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0.3 0.3 0.4

0.1 0.8 0.1

0.1 0.4 0.5

⎤

⎥
⎥
⎦ , (10)

with U = {1, 2} and a G that yields the first action if [πk]1 ≥ 0.5, and the second action
otherwise.

Figure 6 illustrates the smoother α3|6(π) = p(π3 = π|a1:6, x0:6) computed via (8). Its CME
is marked with a brown circle and the adversary’s actual belief as a black star. The smoother,
having access to additional data than the optimal inverse filter, (i.e., the actions u4:6 and states
x4:6), rules out one of the potential beliefs of the adversary. Consequently, its CME is closer to
the actual belief of the adversary. A more detailed comparison of both can be found in [14].

[π]1

[π]2

[π]3

Optimal Smoother

αk|N (π)

Figure 6 The figure shows the smoother αk|N (π) at time k = 3 and N = 6. The bars

display the probability mass function (some beliefs have zero probability). The

actual belief of the adversary is marked with a black star, and the conditional

mean estimate (CME) by a circle. It should be noted that the smoother’s CME

lies close to the actual belief

4.2 Estimating Private Beliefs from Observed Decisions

As discussed in the introduction of this section, papers [9, 11] do not consider how to obtain
the private beliefs if only actions based on them are observed. An alternative approach to
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the Bayesian one outlined above is the following, based on inverse optimization. We consider
sequential stochastic decision problems and determine the set of beliefs that a rational adversary
could have held given an observed action. To elaborate, above we considered only the resulting
policy of the adversary G. In this section, we put structural assumptions on how G is computed.

To do this we first need to specify the decision-making process of the agent. The classical
model for decision-making under uncertainty assumes that a Bayesian agent chooses that which
provides it with the highest expected utility[23–25]. Associated with each state xk ∈ X is a cost
function c(xk, uk), where uk ∈ U ⊂ R

U is the decision variable and U is the decision set which
in this section we assume is a subset of Euclidean space. The rational agent makes its decision
u∗

k ∈ U , based on optimizing its expected cost (conditional on its private information)[23–25].
This expectation depends on the observations Ok collected by the agent, which can include
observations directly measured from the system according to the HMM model but, in fact, here
we allow for the observations to be arbitrarily generated by the system — Such information
can include abstract measurements such as gossip, rumors or other information. The sequential
decision-making process is as follows.

1. New information is made available and the private information is updated to Ok.
2. The agent uses its private information to update its private belief, πk, as in (3).
3. The agent solves the optimization problem:

min
uk∈U

Exk

{
c(xk, uk) | Ok

}

s.t. uk ∈ C,
(11)

where C ⊂ U is the feasible set. The conditional expectation is computed with respect to
the agent’s private information (sigma-algebra) O. Note that with a discrete state-space
X , problem (11) becomes

min
uk∈RU

X∑

i=1

[πk]ic(i, uk)

s.t. uk ∈ C,

(12)

when written out explicitly, where πk ∈ [0, 1]X such that 1Tπk = 1.
4. An optimal decision u∗

k — from the set of minimizers of (11) or (12) — is made and
publicly announced.

5. Time k is increased by one, and we return to Step 1.

Problem 4.1 can be written more specifically in this context as:

Problem 4.4 Decisions are made according to the procedure specified above. The state-
space X = {1, 2, · · · , X} is discrete and the decision set U ⊂ R

U is continuous. The cost
functions {c(x, u)}x∈X , constraints C and the decision u∗

k of an agent are known. Determine
the set Πk of private beliefs πk that are consistent with the public data.

The assumption that the agent’s cost function c(x, u), as well as its constraints C, are known,
is not unreasonable: for example, the costs might related to utilities in a game with public rules,
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or they might be reconstructed (using, e.g., revealed preferences[26, 27]) or estimated (see the
case-study in Section 4.2.2). We thus refer to the costs and constraints, together with the
announced actions, as public data. The private information Ok and the corresponding private
belief πk are, however, typically not known — Nor are they supposed to be.

4.2.1 Algorithm to Estimate Private Beliefs

Problem 4.4 is solved by leveraging results from inverse optimization (e.g., [28–31]). The
key idea is that the Karush-Kuhn-Tucker (KKT) conditions (e.g., [32, 33]) for the decision
problem (12) are necessary and sufficient under the follwing assumption:

Assumption 1 For fixed x, the function c(x, u) is convex and differentiable in u. The
constraints C are affine C = {u ∈ R

U : Au = d, u ≥ 0}, for some A ∈ R
N×U and d ∈ R

N .

Under Assumption 1, we have the following:

Theorem 4.5 (Solution to Problem 4.4) Consider the setup in Problem 4.4 under As-
sumption 1. The agent that made decision u∗

k, at time k, could have had a private belief πk ∈ R
X

if and only if this πk lies in the affine set Πk, specified by:

Πk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

π ∈ R
X :

∃λ ∈ R
U , ν ∈ R

N s.t.

πT1 = 1, π ≥ 0, λ ≥ 0,

[λ]i = 0 if [u∗
k]i �= 0 for i = 1, 2, · · · , U,

X∑

i=1

[π]i∇uc(i, u∗
k) − λ + ATν = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (13)

The proof of this theorem consists of deriving the KKT conditions and considering not
the decision variable uk but instead the private belief πk as an unknown variable. Since the
cost function is convex and the constraints in the problem (12) are defined by affine functions
(under Assumption 1), constraint qualification (e.g., [32, 33]) guarantees that these equations
are in fact also sufficient for optimality. Hence, a candidate private belief in the simplex
{π ∈ R

X : π ≥ 0, πT1 = 1} would make the observed decision u∗
k optimal in (12) if and only if

corresponding ν and λ exist. This means that the adversary observes the action u∗
k performed

by the decision-maker and, using the inverse optimization relation (13), reconstructs a set of
beliefs, Π (u∗

k) that includes the private belief of the decision-maker. The extent to which its
privacy is compromised is discussed in [13].

In [12], bounds πk ∈ R
X and πk ∈ R

X are provided on the private belief, as well as the
solution to the problem of finding the closest private belief π̂k that is consistent with the public
data given a prior estimate π0

k ∈ R
X of the private belief πk.

4.2.2 Case-Study: Estimating the Investor’s Belief from their Portfolio Allocation

In this section, we apply the result presented above in a financially themed case-study.
More specifically, we estimate the private belief of a risk-averse investor based on observing his
portfolio allocations.
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In investment sciences, there have been substantial advances in regime-switching market
models (e.g., [34–36]) that take into account that market conditions, also known as trends,
(randomly) switch between different states, xk ∈ X . The investor is faced with the question:
Given U risky assets, how should a fixed amount of capital be invested so as to maximize the
risk-adjusted return under switching market conditions?

Denote the portfolio allocation vector by uk ∈ R
U , where a fraction [uk]i of the total capital

will be invested in asset i. Usually, one requires that 1Tuk = 1 (that the full capital is exposed
to the market), that uk ≥ 0 (it is only allowed to buy assets, not sell them short), and that
investments are held for one full time-period. Each market state xk results in a different mean
vector μxk

∈ R
U , and a corresponding covariance matrix Σxk

∈ R
U×U , for the different assets.

For a given risk aversion parameter γ ∈ R+, which quantifies how the investor trades potential
return against risk, a regime-switching mean-variance portfolio allocation problem is of the form:

min
uk∈RU

Exk

{
γuT

k Σxk
uk − μT

xk
uk | Ok

}

s.t. 1Tuk = 1, uk ≥ 0,
(14)

whose solution provides the investor with the portfolio giving the optimal risk-adjusted return
for period k. Here, Ok is the investor’s private information that is employed to compute the
posterior distribution of the current market state xk.

Public stock data allows everyone to form estimates of the expected returns and covariances
under different market conditions, meaning that, in practice, the cost functions of a Markowitz-
type investor can be approximated. However, clearly, the success of an investor is closely
related to how well he or she can estimate the current market conditions. This estimation de-
pends on private information; for example, rumors or privileged information. Reconstructing
an investor’s private belief could allow for, e.g., change detection; which could indicate insider
trading, and/or reverse engineering trading strategies.

4.2.3 Numerical Results

In order to visualize the results, we consider synthetic three-regime portfolio allocation
problems, as in (14), with X = 3 and U = 3. This means that both action and belief spaces
are represented by two-dimensional unit simplices.

Figure 7 exemplifies on the left a case where the set of consistent private beliefs Πk is not
a singleton. We computed this set using Theorem 4.5, and it is depicted as the green region
(line). As expected, the actual private belief πk (marked with a black star) lies inside this set.
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Figure 7 The actual private belief πk is marked with a black star in all figures. On the left,

the darker green region corresponds to Πk – the set of beliefs consistent with public

data (defined in Theorem 4.5). On the right, the green triangles mark the beliefs

that are estimated when perturbed cost functions are used. Note that a different

example (one in which the set Πk is singleton) is used, compared to that in the left

figure

Moreover, the cost functions c(x, u) incurred by an agent are not always known with cer-
tainty. To explore the sensitivity of our results, we added random perturbations to the cost
functions when estimating the private belief. To illustrate the results, we consider, on the right,
an example where the set Πk is singleton (i.e., it contains only the actual private belief πk).
The results of 40 simulations are displayed. Random zero-mean Gaussian elementwise pertur-
bations of standard deviations 5% and 10% were added to both the means μx and covariances
Σx. Clearly, the results are robust to small perturbations since all the estimated private beliefs
lie close to the actual private belief. A more elaborate description together with additional
insights can be found in [12].

5 Belief Protection: Counter-Adversarial Decision-Making

Algorithms for estimating the private belief of an agent, like those presented in Section 4,
are useful since they form the foundation for predicting the agent’s future actions. However,
they also enable a number of attack vectors for a malicious actor. Assume that the actions of
the Bayesian agent (the agent, or the decision-maker) are seen by an adversarial agent (the
adversary), that maliciously aims to estimate its private belief. In this section we study the
counter-adversarial problem of how the decision-maker can protect its private belief from the
adversary, while, at the same time, limiting its increase in cost:

Problem 5.1 How should an agent modify its optimal decision in order to not expose its
private belief, while limiting its cost increase due to taking a suboptimal decision?

This counter-adversarial decision-making problem has a vast number of applications, ranging
from security of cyber-physical systems to protection of investment strategies, passing by ana-
lyzing how social and economic herding occurs. In social learning, privacy constraints prevent
the estimation and disclosure of an agent’s private belief to the other agents. Another potential
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area of application is the portfolio allocation setup presented in Subsection 4.2.2. Consider that
a competing investor wants to make an informed investment decision as the one of a successful
investor, but does not have its expertise and knowledge. By observing the actions of the main
investor, the competitor wants to infer the private belief of this investor.

In summary, the setup considered is as follows. At each time step, the agent described
in Subsection 4.2 — henceforth referred to as the original decision-maker (ODM) — collects
information regarding its environment and performs an action. Assuming that it is aware of an
adverse threat, it must consider the question: If I publicly announce the decision u∗

k, what is
the set of beliefs Π (u∗

k) consistent with my decision that the adversary can determine? As was
demonstrated in Subsection 4.2, the set includes the actual private belief, πk, and, therefore,
the privacy of the ODM is compromised. We propose a Counter-adversarial Decision-Maker
(CDM), that adds to its decision-making process the obfuscator block shown in blue in Figure 8
to conceal its private belief from the adversary. While the ODM performs the optimal action
u∗

k with cost c∗k, the CDM performs a suboptimal action ũk with cost c̃k.

System Sensor Filter
P B T

xk yk πk Policy

G
Obfuscator

ũk, c̃ku∗
k, c

∗
k

πk /∈ Π(ũk)

Figure 8 A Counter-adversarial Decision-Maker (CDM) uses an obfuscator block to trans-

form its decision u∗
k into a suboptimal decision ũk with cost c̃k, by optimizing a

privacy measure Ψ(ũk). The adversary observes the decision (now ũk) and, again,

reconstructs a set of beliefs (now Π (ũk)). The new decision ũk is chosen such that,

unlike for the ODM’s in Figure 5, the CDM’s privacy is not compromised.

Performing a suboptimal action ũk entails an increase in cost (c̃k ≥ c∗k). Thus, protecting
its privacy comprises a trade-off between how much the decision-maker is able to obscure its
private belief versus how much it is willing to pay for doing so. Problem 5.1 can be formulated
as:

max
ũk∈U

Ψ(ũk)

s.t. ũk ∈ C,

Exk

{
c(xk, ũk)

} ≤ c∗k(1 + b),

(15)

which should be interpreted as follows. Obfuscating the decision-maker’s private belief consists
of making a suboptimal decision ũk, such that the set of private beliefs reconstructed by the
adversary, Π (ũk), from (13), maximizes a certain privacy measure Ψ(ũk). The last constraint
represents how much (measured by the obfuscation cost budget b ∈ R+) the agent allocates to
obfuscating its private belief.

Problem (15) is generally computationally intractable to solve exactly, since the privacy
measures Ψ(ũk) are typically not concave. We propose a probabilistic framework based on a
similar concept to that of randomized actions in Markov decision processes, covered in [37].
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This idea originated from the introduction of “mixed strategies” in the field of game theory[38].
For approximate methods to convexify the problem, we use Monte Carlo integration[39]. This
method is particularly useful for integration in high-dimensional spaces, since it has been shown
to have an accuracy in terms of the standard deviation of the error independently of the number
of dimensions.

We assume that the distribution pũk
(·) is a probability mass function over a finite set of

points {ũ(l)
k }M

l=1. Then, the problem solved by the CDM becomes the following:

Theorem 5.2 (Obfuscation of the Private Belief on Average) Optimization problem (15)
can, assuming a policy concentrated in M actions, be written as:

max
p∈RM

M∑

l=1

[p]lΨ(ũ(l)
k )

s.t. [p]l = 0 if ũ
(l)
k /∈ C,

M∑

l=1

[p]l

{ X∑

i=1

πic(i, ũ
(l)
k )

}

≤ c∗(1 + b),

[p]l ≥ 0, l = 1, 2, · · · , M,

M∑

l=1

[p]l = 1,

(16)

which is a finite-dimensional linear program and, therefore, computationally efficient to solve
using existing solvers.

5.1 Numerical Results

In Subsection 4.2.3, we saw that a rival investor (i.e., an adversary) that has access to less
(or worse) private information than a main investor from Subsection 4.2.2, is able to estimate
a set of private beliefs consistent with the private belief of the investor solving (14). In this
section we show how the investor can utilize (16) to protect its privacy.

Suppose there are three risky assets and three market states (i.e., U = X = 3). The investor
allocates 10% budget to preserve its privacy (b = 0.1) and aims to do so by using a maximal
obfuscation measure:

Ψ(ũk) = dist(πk,Π (ũk)) = min
y∈Π (ũk)

‖πk − y‖2 . (17)

In other words, this measure states that the agent wants the reconstructed set to be as distant
as possible from the actual private belief. Other privacy measures are discussed in [13].

The left plot of Figure 9 shows the actions chosen by the decision-makers at a certain
timestep k. The ODM solves problem (12) and selects action u∗

k, which is the optimal action if
there is no adversary. The CDM solves problem (16) and takes a random action between those
in the set {ũ(l)

k }M
l=1 (defined in (16)) marked as (orange small), where each has a probability

given by the vector p, here represented as the bar on top of each action (orange line). In this
case, two actions had a positive probability of being chosen and the chosen action is denoted
as ũk.
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Figure 9 The left plot represents the action space with the actions chosen by the two decision-

makers (green triangle, orange dot), and the right plot the belief space with the

respective sets of beliefs reconstructed by the adversary according to the actions

chosen; at a certain time step

The sets of beliefs that the adversary can reconstruct from each of the agent’s actions at this
timestep (described in Section 4.2) are illustrated on the right plot of Figure 9. In this example,
all the sets have a single element. The actual private belief πk of the decision-makers is shown
in black (star). The privacy of the ODM is compromised, since its private belief belongs to the
set of beliefs reconstructed by the adversary (πk ∈ Π (u∗

k) ⇔ dist(πk,Π (u∗
k)) = 0). On the other

hand, the suboptimal action performed by the CDM has allowed it to successfully obfuscate
its private belief (πk /∈ Π (ũk)). Nevertheless, according to the maximal obfuscation criterion
chosen, the level of privacy depends on the distance between πk and Π (ũk), shown in dashed
lines and computed by (17).

Over fifty time steps, while the ODM’s privacy is always compromised (the distance is zero),
the CDM managed to increase its privacy to an average of 0.8 (where the maximum distance
between two points in the simplex is approximately 1.4). The cost increased by 9%, which is
still less than the allocated budget of 10%. More details can be found in [13].

6 Conclusions

In this work we explored the inverse filtering, belief estimation and privacy protection prob-
lems on HMMs. For the first, we showed that HMM parameters and sensor measurements can
be reconstructed from posterior distributions of an HMM filter by using a nullspace clustering
algorithm, which was exemplified with a sleep tracking example.

Since the posterior distribution (also called belief) is often not known, we next considered the
problem of estimating the private belief of the agent from its actions, in two different setups. In
one setup, by taking the full generative model into account to compute the optimal smoother for
the private beliefs, we obtain a full probabilistic characterization of how likely different beliefs
are. In another setup, given only measurements of the decision-maker’s decisions and known
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preferences, we reconstruct a set of beliefs that either includes or is equal to the true belief.
The problem of estimating agents’ private beliefs has implications in, for example, social

learning and portfolio allocation, where it raises important questions of privacy. We thus next
showed how an agent can modify its optimal decision in order to not expose its private belief,
while limiting its cost increase due to taking a suboptimal decision.

All in all, this paper provides (counter-)adversarial frameworks for estimating (protecting)
private beliefs of agents, and, from there, other characteristics of interest of their decision-
making process. In the future, it would be interesting to analyse the computational complexity
resulting from the estimation of growing sets of potential beliefs. Another extension would
be to study the case of mismatched systems (e.g., where the adversary does not have perfect
knowledge of the transition kernel P ). We would also like to formulate the counter-adversarial
problem in a game-theoretical framework, where the adversary is aware of the obfuscation
mechanism used by the decision-maker. It would also be interesting to apply counter-adversarial
decision-making to the smoother.
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2004,

[33] Rockafellar R T, Convex Analysis, Princeton University Press, Princeton, 1970.

[34] Yin G G and Zhou X Y, Markowitz’s mean-variance portfolio selection with regime switching:

From discrete-time models to their continuous-time limits, IEEE Transactions on Automatic

Control, 2004, 49(3): 349–360.

[35] Elliott R J, Siu T K, and Badescu A, On mean-variance portfolio selection under a hidden

Markovian regime-switching model, Economic Modelling, 2010, 27(3): 678–686.

[36] Nystrup P, Madsen H, and Lindstrm E, Dynamic portfolio optimization across hidden market

regimes, Quantitative Finance, January 2018, 18(1): 83–95,

[37] Puterman M L, Markov Decision Processes: Discrete Stochastic Dynamic Programming, John

Wiley & Sons, Inc., 1994.

[38] McKinsey J C C, Introduction to the Theory of Games, Courier Corporation, 2003.

[39] Davis P J and Rabinowitz P, Methods of Numerical Integration, Courier Corporation, 2007.


